Compensatory evolution in rifampin-resistant Escherichia coli.
نویسنده
چکیده
This study examines the intrinsic fitness burden associated with RNA polymerase (rpoB) mutations conferring rifampin resistance in Escherichia coli K12 (MG1655) and explores the nature of adaptation to the costs of resistance. Among 28 independent Rif(r) mutants, the per-generation fitness burden (in the absence of rifampin) ranged from 0 to 28%, with a median of 6.4%. We detected no relationship between the magnitude of the cost and the level of resistance. Adaptation to the costs of rif resistance was studied by following serial transfer cultures for several Rif(r) mutants both in the presence of rifampin and in the absence. For cultures evolved in the absence of rifampin, single clones isolated after 200 generations were more fit than their ancestor; we saw no association between increased fitness and changes in the level of rifampin resistance; and in all cases, increased fitness was due to compensatory mutations, rather than to reversion to drug sensitivity. However, in the parallel evolution experiments in the presence of rifampin, overall levels of resistance increased as did relative fitness-for all strains save one that had an initially high level of resistance. Among the evolved clones tested, five (of seven) demonstrated increased transcription efficiency (assessed using a semiquantitative RT-PCR protocol). The implications of these results for our understanding of adaptive molecular evolution and the increasing clinical problem of antibiotic resistance are discussed.
منابع مشابه
Multidrug-resistant bacteria compensate for the epistasis between resistances
Mutations conferring resistance to antibiotics are typically costly in the absence of the drug, but bacteria can reduce this cost by acquiring compensatory mutations. Thus, the rate of acquisition of compensatory mutations and their effects are key for the maintenance and dissemination of antibiotic resistances. While compensation for single resistances has been extensively studied, compensator...
متن کاملDraft Genome Sequence of Escherichia coli 26R 793, a Plasmid-Free Recipient Strain Commonly Used in Conjugation Assays
Here, we report the draft genome sequence of the lactose-negative, rifampin-resistant, Escherichia coli strain 26R 793. This isolate has been widely used in conjugation experiments as a general recipient strain.
متن کاملDistribution in nature of R factors that increase susceptibility to rifampin of rif-r mutants in Escherichia coli.
Among 117 gram-negative bacteria isolated from pathological materials, 46 were found to carry antibiotic resistances transferable to Escherichia coli K-12; we therefore concluded that they carry infectious R factors. When transferred to a type of rifampin-resistant mutant of E. coli, all these R factors decreased the resistance to rifampin, but only 10% of them lowered the resistance to one-ten...
متن کاملExpression of tolC and organic solvent tolerance of Escherichia coli ciprofloxacin resistant mutants
AcrAB-TolC is a major efflux pump in Escherichia coli. It was reported that tolC is overexpressed and involves in improving the organic solvent tolerance level in Escherichia coli marR mutants that are resistant to several antibiotics, such as ciprofloxacin. Low and intermediate levels resistance did not improve organic solvent tolerance. Thus, in this descriptive-experimental study it was deci...
متن کاملIsolation, Characterization and Antibiotic Resistance of Shiga Toxin-Producing Escherichia coli in Hamburger and Evolution of Virulence Genes stx1, stx2, eaeA and hly by Multiplex PCR
Background & Objectives: Shiga toxin-producing Escherichia coli (STEC) O157:H7 have emerged as pathogens that can cause food-borne infections and severe and potentially fatal illnesses in humans. E.coli O157:H7 colonizes the digestive tract of cattle and is transmitted to humans by food and water. The objectives of this study were to characterize the prevalence of E.coli O157:H7 isolates in ham...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 156 4 شماره
صفحات -
تاریخ انتشار 2000